Cholesterol Organization in Phosphatidylcholine Liposomes: A Surface Plasmon Resonance Study
نویسندگان
چکیده
Models for the organization of sterols into regular arrays within phospholipid bilayers have been proposed previously. The existence of such arrays in real systems has been supported by the fact that concentration-dependent sterol properties show discontinuities at the cholesterol mole fractions corresponding to regular lattice arrangements. Experimental results presented here are based on a surface plasmon resonance assay that was used to analyze rates of cyclodextrin-mediated removal of cholesterol from adsorbed liposomes at cholesterol mole fractions up to χC = 0.55. Two kinetic pools of cholesterol were detected; there was a fast pool present at χC > 0.25, and a slow pool, with a removal rate that was dependent on the initial χC but that did not vary as χC decreased during the course of one experiment. The cholesterol activity therefore seems to be affected by sample history as well as local concentration, which could be explained in terms of the formation of superlattices that are stable for relatively long times. We also describe a variation on the traditional lattice models, with phosphatidylcholine (PC) being treated as an arrangement of hexagonal tiles; the cholesterol is then introduced at any vertex point, without increasing the total area occupied by all the lipid molecules. This model is consistent with Langmuir trough measurements of total lipid area and provides a simple explanation for the maximum solubility of cholesterol in the PC bilayer. OPEN ACCESS Materials 2012, 5 2307
منابع مشابه
Properties of nonfused liposomes immobilized on an L1 Biacore chip and their permeabilization by a eukaryotic pore-forming toxin.
The L1 chip is used intensively for protein-membrane interaction studies in Biacore surface plasmon resonance systems. The exact form of captured lipid membranes on the chip is, however, not precisely known. Evidence exists that the vesicles both remain intact after the binding to the chip and fuse to form a large single-bilayer membrane. In this study, we were able to bind up to approximately ...
متن کاملMolecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin.
Sphingomyelin (SM) is abundant in the outer leaflet of the cell plasma membrane, with the ability to concentrate in so-called lipid rafts. These specialized cholesterol-rich microdomains not only are associated with many physiological processes but also are exploited as cell entry points by pathogens and protein toxins. SM binding is thus a widespread and important biochemical function, and her...
متن کاملAdenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays
In this study, we prepared adenosine triphosphate (ATP) encapsulated liposomes, and assessed their applicability for the surface enhanced Raman scattering (SERS)-based assays with gold-silver alloy (Au@Ag)-assembled silica nanoparticles (NPs; SiO₂@Au@Ag). The liposomes were prepared by the thin film hydration method from a mixture of l-α-phosphatidylcholine, cholesterol, and PE-PEG2000 in chlor...
متن کاملBehenic Acid Monolayer and Bilayer Assemblies- A Study of Concanavalin A (Con A) Adsorption and its Interaction with Dextran Using Surface Plasmon Resonance Spectroscopy and Microscopy
Deposition of behenic acid (B.A) mono and bilayers onto gold coated surfaces was performed by Langmuir-Blodget dip-casting technique. Surface Plasmon resonance (SPR) and ellipsometry methods were employed for investigation of the monolayer and bilayer films. The adsorption of the biologically important molecule Concanavalin A (Con A) from bulk solution to these monolayers and bilayers as we...
متن کاملLateral distribution of cholesterol in dioleoylphosphatidylcholine lipid bilayers: cholesterol-phospholipid interactions at high cholesterol limit.
Lateral organization of cholesterol in dioleoyl-phosphatidylcholine (DOPC) lipid bilayers at high cholesterol concentration (>45 mol%) was investigated using steady-state fluorescence anisotropy and fluorescent resonance energy transfer techniques. The recently devised Low Temperature Trap method was used to prepare compositionally uniform cholesterol/DOPC liposomes to avoid the problem of lipi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2012